Disruption of the ER-α36-EGFR/HER2 Positive Regulatory Loops Restores Tamoxifen Sensitivity in Tamoxifen Resistance Breast Cancer Cells
نویسندگان
چکیده
Tamoxifen provided a successful treatment for ER-positive breast cancer for many years. However, most breast tumors develop tamoxifen resistance and are eventually refractory to tamoxifen therapy. The molecular mechanisms underlying development of tamoxifen resistance have not been well established. Recently, we reported that breast cancer cells with high levels of ER-α36, a variant of ER-α, were resistant to tamoxifen and knockdown of ER-α36 expression in tamoxifen resistant cells with the shRNA method restored tamoxifen sensitivity, indicating that gained ER-α36 expression is one of the underlying mechanisms of tamoxifen resistance. Here, we found that tamoxifen induced expression of ER-α36-EGFR/HER2 positive regulatory loops and tamoxifen resistant MCF7 cells (MCF7/TAM) expressed enhanced levels of the loops. Disruption of the ER-α36-EGFR/HER2 positive regulatory loops with the dual tyrosine kinase inhibitor Lapatinib or ER-α36 down-regulator Broussoflavonol B in tamoxifen resistant MCF7 cells restored tamoxifen sensitivity. In addition, we also found both Lapatinib and Broussoflavonol B increased the growth inhibitory activity of tamoxifen in tumorsphere cells derived from MCF7/TAM cells. Our results thus demonstrated that elevated expression of the ER-α36-EGFR/HER2 loops is one of the mechanisms by which ER-positive breast cancer cells escape tamoxifen therapy. Our results thus provided a rational to develop novel therapeutic approaches for tamoxifen resistant patients by targeting the ER-α36-EGFR/HER2 loops.
منابع مشابه
Tamoxifen resistance in breast tumors is driven by growth factor receptor signaling with repression of classic estrogen receptor genomic function.
Not all breast cancers respond to tamoxifen, and many develop resistance despite initial benefit. We used an in vivo model of estrogen receptor (ER)-positive breast cancer (MCF-7 xenografts) to investigate mechanisms of this resistance and develop strategies to circumvent it. Epidermal growth factor receptor (EGFR) and HER2, which were barely detected in control estrogen-treated tumors, increas...
متن کاملEstrogen Receptor Genomic Function Factor Receptor Signaling with Repression of Classic Tamoxifen Resistance in Breast Tumors Is Driven by Growth
Not all breast cancers respond to tamoxifen, and many develop resistance despite initial benefit. We used an in vivo model of estrogen receptor (ER)–positive breast cancer (MCF-7 xenografts) to investigate mechanisms of this resistance and develop strategies to circumvent it. Epidermal growth factor receptor (EGFR) and HER2, which were barely detected in control estrogen-treated tumors, increas...
متن کاملLower Beclin 1 downregulates HER2 expression to enhance tamoxifen sensitivity and predicts a favorable outcome for ER positive breast cancer
Tamoxifen(TAM) is one of the most effective endocrine treatment for estrogen receptor(ER)-positive breast cancer, however drug resistance greatly limits benefit of it. Our purpose is to uncover the role of Beclin 1 in tamoxifen resistance and prognosis of ER positive breast cancer. We established a tamoxifen resistant ER-positive breast cancer cell subline MCF-7R presenting with higher Beclin 1...
متن کاملEpidermal growth factor receptor/HER2/insulin-like growth factor receptor signalling and oestrogen receptor activity in clinical breast cancer.
Breast cancer models of acquired tamoxifen resistance, oestrogen receptor (ER)+ /ER- de novo resistance and gene transfer studies cumulatively demonstrate the increased importance of growth factor receptor signalling, notably the epidermal growth factor receptor (EGFR)/HER2, in tamoxifen resistance. Our recent in vitro studies also suggest that EGFR signalling productively cross-talks with insu...
متن کاملCell Kinetic Study of Tamoxifen Treated MCF-7 and MDA-MB 468 Breast Cancer Cell Lines
Apoptosis could be a major mechanism of antitumor effect of tamoxifen. Therefore this study is designed to characterize the kinetic behavior of tamoxifen-induced apoptosis in the estrogen receptor positive (ER+) and negative (ER-) cell lines, MCF-7 and MDA-MB-468. Frequency of cell death was examined by trypan blue and acridine orange staining. Annexin V-Fluorescein/PI was used in flow cytometr...
متن کامل